Today I finally made it to the gym, I can only hope tomorrow I'll still be able to walk!!:.
I think I'm starting to understand what these proofs are all about. This is the last one before going to bed (should you find any error, please let me know):
Teorema: A x (B – C) = (A x B) – (A x C)
Demostración:
Sea (x, y) cualquier par ordenado del producto cartesiano A x (B – C). Por la definición de producto cartesiano, x ∈ A y y ∈ (B – C). Por la definición de diferencia, y ∈ B, pero y ∉ C. Por la definición de producto cartesiano, (x,y) ∈ (A x B) y (x, y) ∉ (A x C). Por la definición de diferencia, (x, y) ∈ (A x B) – (A x C). Es decir, A x (B – C) = (A x B) – (A x C).
This I studied a few years ago, but even then I didn't fully understood the concepts. As I previously said, this is a chance to redeem myself!!:.
I think I'm starting to understand what these proofs are all about. This is the last one before going to bed (should you find any error, please let me know):
Teorema: A x (B – C) = (A x B) – (A x C)
Demostración:
Sea (x, y) cualquier par ordenado del producto cartesiano A x (B – C). Por la definición de producto cartesiano, x ∈ A y y ∈ (B – C). Por la definición de diferencia, y ∈ B, pero y ∉ C. Por la definición de producto cartesiano, (x,y) ∈ (A x B) y (x, y) ∉ (A x C). Por la definición de diferencia, (x, y) ∈ (A x B) – (A x C). Es decir, A x (B – C) = (A x B) – (A x C).
This I studied a few years ago, but even then I didn't fully understood the concepts. As I previously said, this is a chance to redeem myself!!:.
Well there's a riot going on
Student demonstration time.
No hay comentarios:
Publicar un comentario